Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure
نویسندگان
چکیده
منابع مشابه
Self-dissimilarity as a high dimensional complexity measure
For many systems characterized as “complex” the patterns exhibited on different scales differ markedly from one another. For example the biomass distribution in a human body “looks very different” depending on the scale at which one examines it. Conversely, the patterns at different scales in “simple” systems (e.g., gases, mountains, crystals) vary little from one scale to another. Accordingly,...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملClustering Gene Expression Data Using an Effective Dissimilarity Measure
This paper presents two clustering methods: the first one uses a density-based approach (DGC) and the second one uses a frequent itemset mining approach (FINN). DGC uses regulation information as well as order preserving ranking for identifying relevant clusters in gene expression data. FINN exploits the frequent itemsets and uses a nearest neighbour approach for clustering gene sets. Both the ...
متن کاملImproved K-Modes for Categorical Clustering Using Weighted Dissimilarity Measure
K-Modes is an extension of K-Means clustering algorithm, developed to cluster the categorical data, where the mean is replaced by the mode. The similarity measure proposed by Huang is the simple matching or mismatching measure. Weight of attribute values contribute much in clustering; thus in this paper we propose a new weighted dissimilarity measure for K-Modes, based on the ratio of frequency...
متن کاملA New Dissimilarity Measure for Clustering Seismic Signals
Hypocenter and focal mechanism of an earthquake can be determined by the analysis of signals, named waveforms, related to the wave field produced and recorded by a seismic network. Assuming that waveform similarity implies the similarity of focal parameters, the analysis of those signals characterized by very similar shapes can be used to give important details about the physical phenomena whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2018
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1006283